

Urs Albert Meyer, M.D. Biozentrum of the University of Basel CH-4056 Basel, Switzerland www.ursmeyer.biozentrum.unibas.ch

ICCP Mangalore, India / August 31, 2023

Pharmacogenetics - Pharmacogenomics

Study and clinical application of the influence of genetic variation on drug response

2

6

Pharmacogenetics: Variability in drug response due to heredity. Vogel, 1959 Pharmacogenomics: Role of the genome in human drug response. After 2001

The two terms are used interchangeably !

Pharmacogenomics A broader definition

Study of genomic technologies to enable the discovery and development of novel drugs, and the optimization of drug dose and choice in individual patients to maximize efficacy and minimize toxicity

Munir Pirmohamed, Nature Rev Genetics (2023) 24: 350-362.

PHARMACOGENETICS PHARMACOGENOMICS

Represent an essential component or part of:

Genomic Medicine Personalized Medicine Individualized Medicine Stratified Medicine **Precision Medicine**

The Past

5

Initial Clinical Observations seven decades ago !

Pharmacogenetics

Landmark discoveries in the 1950s

1) Isoniazid: Rx of Tuberculosis

Slow metabolism (acetylation) of isoniazid is an autosomal recessive trait associated with peripheral neuropathy (Bönike & Reif, 1952; Hughes et al, 1953/1954; Evans et al, 1960)

1952

1960

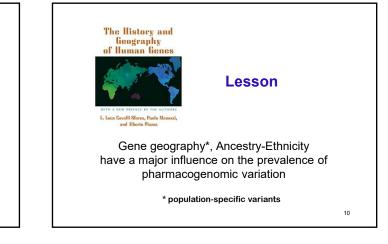
I^b

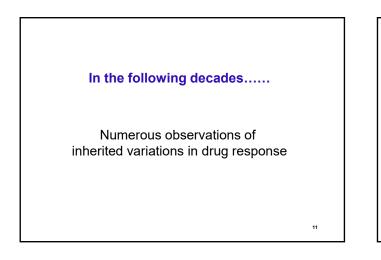
2) Succinylcholine: Neuromuscular blocker, adjunct to anaesthesia

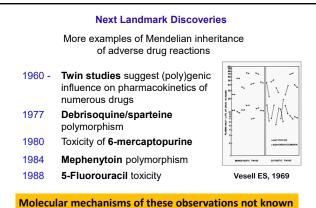
Prolonged muscle paralysis (apnoe) is due to altered kinetics by an atypical pseudocholinesterase inherited as an autosomal recessive trait (Evans et al, 1952; Lehmann & Ryan, 1956: Kalow & Staron, 1957)

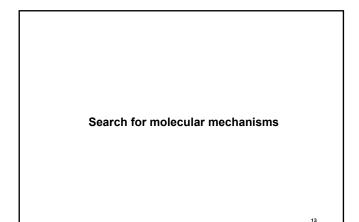
7

Pharmacogenetics

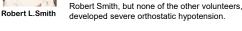

Landmark discoveries in the 1950s




3) Primaquine, Rx and Prevention of Malaria *In World War II, 10 % of U.S. African-American soldiers developed acute hemolytic crises when given primaquine or other related antimalarial drugs (Clayman et al, 1952; Hockwald et al, 1952)*


The sensitivity of erythrocytes is caused by a deficiency of glucose-6-phophate dehydrogenase (**G6PD**), which alters erythrocyte metabolism. G6PD deficiency is inherited as X-chromosomal recessive trait (Beutler et al, 1955; Carson et al, 1956).

Glucose-6-Phosphate Dehydrogenase Deficiency Drugs and chemicals associated with hemolysis Antimalarials Sulfonamides Nitrofurantoin Co-trimoxazole . Rasburicase High correlation between **prevalence of malaria** and frequency of low activity alleles of G6PD: Selective advantage of mutation to survive malaria Broad beans (Favism) others Most common enzyme deficiency (~ 400 million people) More than 400 variants of the enzyme Incidence Italy 0.1 to 23.1 %, Turkey 1.3 to 6.9 %, Syria ~ 3%) Patients may present with acute hemolysis Gammal RS et al. Expanded Clinical Pharmacogenetics Implen Guideline for Medication Use in the Context of G6PD Genotype. Clin Pharmacol Ther (2023) 113 (5): 973-985. 9

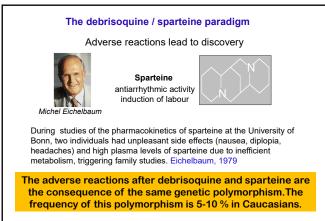


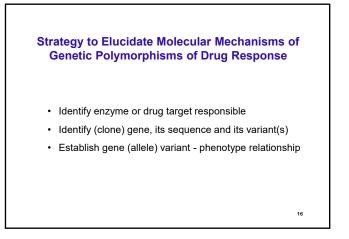
The debrisoquine / sparteine paradigm

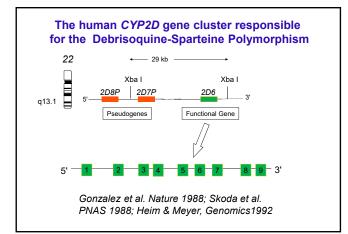
Adverse reactions lead to discovery

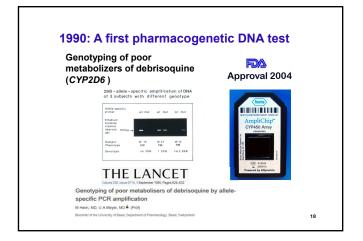
X

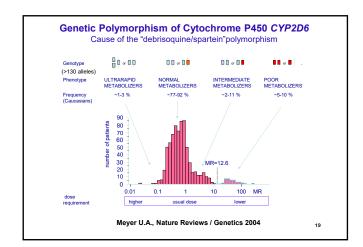
In 1975, at St. Mary's Hospital Medical School in London, Robert L. Smith, ingested 32 mg of debrisoquine, as did 4 other volunteers.





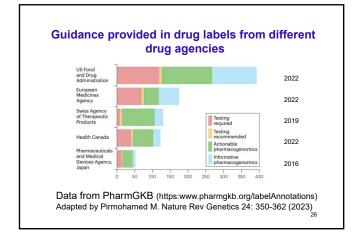

Urine analyis showed inability to hydroxylate debrisoquine. Which led to more extensive studies in medical students and families. Mahgoub et al, 1977; Smith RL,1986

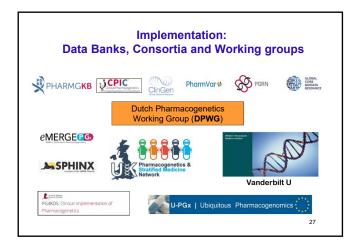

Debrisoquine adrenergic neuroblocker lowers blood pressure



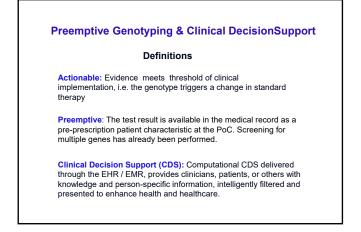
1 9 88	Cloning of the CYP2D6 gene and its variants	Nature 331, 442-446, 1988
	(UA Meyer/ F Gonzalez teams)	
1991	Cloning of the NAT2 gene and its variants	PNAS 88, 5237-5241, 1991
	(UA Meyer team)	
1993	Cloning of the <i>TPMT</i> gene (R Weinshilboum team)	Mol Pharmacol 43,878-887,1993
1994	Cloning of CYP2C19 (J Goldstein and UA Meyer collaboration)	JBC 269, 15419-15422, 1994
1996	etc. etc.etc.	

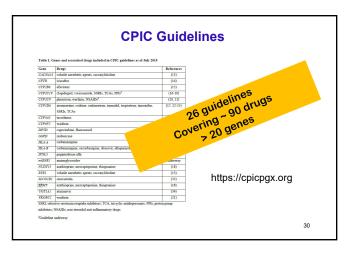
Which of these many gene-drug interactions can be applied to improve pharmacotherapy ?

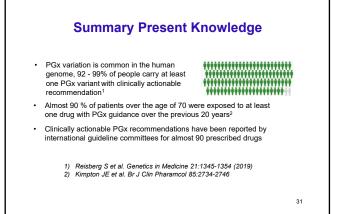

Clinical Implementation of Pharmacogenomics

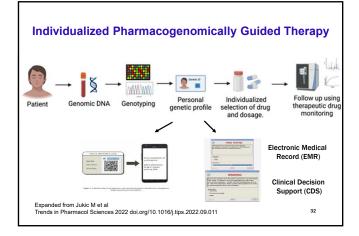

Reminder: Goals of Pharmacogenomics

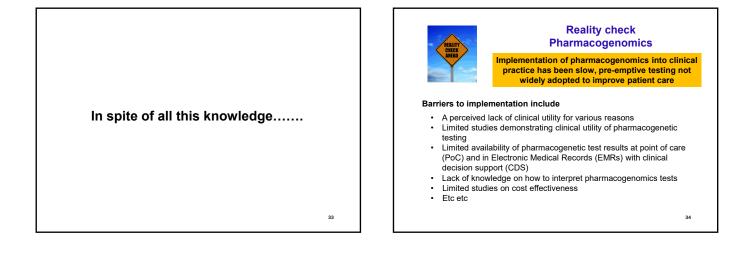
Identify the conditions in which heritable factors allow pharmacogenomic testing to:

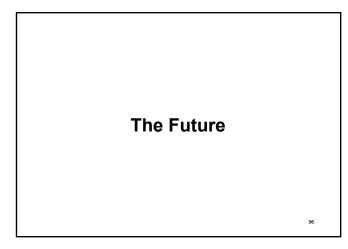

- · Predict the «precise» individual dose
- Predict nonresponders & responders to therapy
- · Predict which individuals are at risk of drug toxicity
- · Select the optimal drug for the individual patient

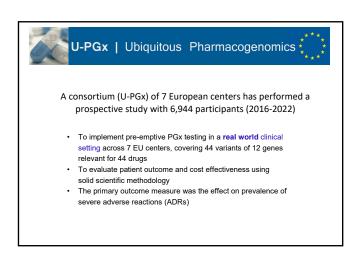

Table of Pharmacogenetic Associations		
Drug-gene associations for which data support therapeutic management recommendations	58	
Pharmacogenetic associations for which the data indicate a potential impact on safety or response	20	
Pharmacogenetic associations for which the data demonstrate a potential impact on pharmacokinetic properties only	39	
https://www.fda.gov/medical-devices/precision-m table-pharmacogenetic-associations	edicine/	
FDA: Food and Drug Administration, U.S. Department of Health and	Human Services	

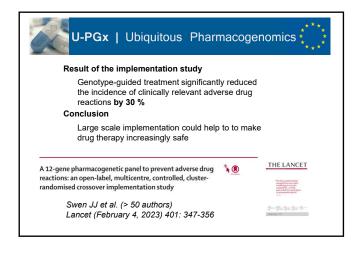


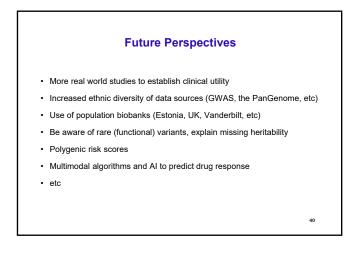


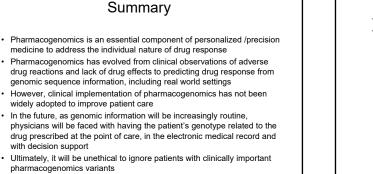

Implementation: Data Banks, Consortia and Working groups				
	https://cpicpgx.org			
CPIC:	The Clinical Pharmacogenetics Implementation Consortium (open, international non-profit group) creates standardized guidelines on how to use genomic data to inform prescribing.			
DPWG:	The Dutch Pharmacogenetic Working Group. Dose recommendations for gene-drug interactions, included in Representations data base.			
Many	r other implementation initiatives and consortia in North America, Europe and Asia			



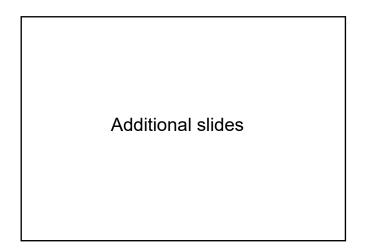

Stakeholder	Role
Regulatory bodies	Drug labeling, test requirement
Medical Center / hospital administration	Secure funds and infrastructure
Therapeutics committees (hospital, learned societies)	Select actionable drug-gene pairs Approve CDS (clinical decision support) in EMR
Laboratory	PoC or preemptive genotyping
Physician/ Clinical Pharmacist	Interpret the test result, therapeutic recommendation,decision
Patient	Provide feedback outcome
Payer / Health insurance	Reimburse test and therapy
Pharma Industry	Diagnostic-therapeutic tandem approach

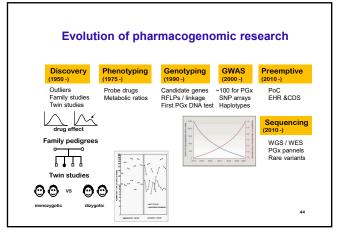



The challenge

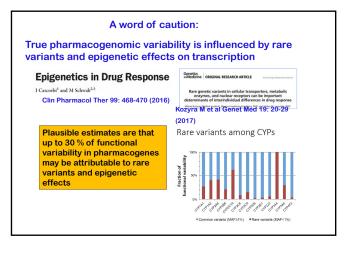

For acceptance of the clinical utility of pharmacogenomics, it is essential that implementation is supported by evidence demonstrating a clear benefit of the pre-emptive genotyping strategy in "**real-world**" settings

A first study with this purpose has just been reported





41


37

